## USGCRP Interagency Working Group on Integrated Observations

#### AGU Town Hall

Sally McFarlane (DOE) Barry Lefer (NASA), Diane Stanitski (NOAA)

December 11, 2017

#### U.S. Global Change Research Program

USGCRP comprises **13 Federal agencies** that conduct or use research on global change and its impacts on society



"... assist the Nation and the world to understand, assess, predict and respond to human-induced and natural process of global change"

Global Change Research Act, 1990

#### **USGCRP's four strategic goals:**

- Advance Science Advance scientific knowledge of the integrated natural and human components of the Earth system to understand climate and global change.
- Inform Decisions Provide the scientific basis to inform and enable timely decisions on adaptation and mitigation.
- Conduct Sustained Assessments Build sustained assessment capacity that improves the Nation's ability to understand, anticipate, and respond to global change impacts and vulnerabilities.
- Communicate and Educate Advance communication and education to broaden public understanding of global change and develop the scientific workforce of the future.

## USGCRP Sustained Assessment & Related Activities at AGU

- Fourth National Climate Assessment (NCA4) Vol. I: Climate Science Special Report <a href="mailto:science2017.globalchange.gov">science2017.globalchange.gov</a>
  - An authoritative report of the physical science of climate change with a focus on the US
  - Represents the scientific consensus on climate science in America
  - At AGU <u>Union Session on the Climate Science Special Report</u> (U23A)
- NCA4 Vol II: Climate Change Impacts, Risks, and Adaptation in the United States
  - Report assesses a range of climate change impacts, helping decision makers better identify and manage climate-related risks
  - Available for public review and comment until January 31, 2018
  - At AGU <u>Sustained Assessment session</u> (GC31H and GC33E).
- 2nd State of the Carbon Cycle Report (SOCCR-2)
  - Assesses the state of the carbon cycle across North America, emphasizing advances in the understanding of carbon cycle science and associated human dimensions
  - Available for public review and comment until January 8, 2018
  - At AGU <u>SOCCR sessions</u> (B41G and TH23I)
- USGCRP Booth (#745) in the Exhibition Space.



#### **USGCRP Interagency Working Groups**

USGCRP has a broad range of interagency working groups that implement and coordinate global change research activities within and across agencies

- Adaptation Science Interagency Working Group
- <u>Carbon Cycle Interagency</u>
   <u>Working Group</u>
- <u>Education, Extension, and</u>
   <u>Training Interagency Working</u>
   <u>Group</u>
- Global Change Information Interagency Working Group
- Indicators Interagency Working Group
- Integrated Observations
   Interagency Working Group

- Interagency Crosscutting Group on Climate Change and Human Health
- Interagency Group on Integrative Modeling
- International Activities
   Interagency Working Group
- Process Research Coordinating Committee
- Scenarios and Interpretive Science Coordinating Group
- <u>Social Sciences Coordinating</u> Committee



## Interagency Working Group on Observations (ObsIWG)

 The Observations Working Group (ObsIWG) facilitates the exchange and coordination of observations capabilities and observation technique-related research relevant to climate and related global change within the participating agencies of USGCRP.

#### Interagency Coordination

- Interagency coordination on observational activities has many flavors:
  - Can be initiated by federal program managers or by the community
  - Can consist of equal participation/support by multiple agencies or consist of a lead agency with contributions from other agencies
  - Includes leadership and participation in workshops, reports, and many other strategic planning activities
  - Includes participation in international activities, networks, and organizations
- Focus today on several types of concrete observational activities with interagency aspects or opportunities:
  - Observational networks
  - Research sites
  - Field campaigns



#### Town Hall

#### Goals:

- Inform community of the many flavors of existing observational activities that include interagency coordination
- Engage the community on ideas for strengthening interagency coordination

#### Outline:

- Brief presentations by program managers or project managers/principal investigators of several observational activities
  - What is the scientific goal of your activity?
  - In what way does your activity currently have inter-agency coordination or participation? How was that inter-agency coordination or participation developed?
  - What are ways that other agencies/investigators could be involved or contribute?
  - What are obstacles to inter-agency coordination that you have experienced? How have you overcome them?
- Moderated discussion on ideas for increased interagency coordination of observational efforts

#### **Town Hall Presentations**

- Global Ocean Acidification Observing Network (GOA-ON) and Integrated Ocean Observing System (IOOS)
  - Participant: Wei-Jun Cai, University of Delaware
- Atmospheric Radiation Measurement (ARM) research sites
  - Participant: Jim Mather, Pacific Northwest National Laboratory
- NOAA Atmospheric Baseline Observatories
  - Participant: James Butler, NOAA ESRL
- PANDORA trace gas measurements network
  - Participant: Bob Swap, NASA
- DYNAMO (Dynamics of the MJO) field campaign
  - Participant: Chidong Zhang, NOAA PMEL
- ABOVE (Arctic Boreal Vulnerability Experiment) field campaign
  - Participant: Hank Margolis, NASA
- LTER (Long-Term Ecological Research) network
  - Participant: Michelle Mack, Northern Arizona University



### Global Ocean Acidification Observing Network (GOA-ON) and Integrated Ocean Observing System (IOOS)

Wei-Jun Cai

University of Delaware



#### Three high level goals:

- 1. Improve our understanding of OA conditions
- 2. Improve our understanding of ecosystem response to OA
- 3. Acquire and exchange data and knowledge required to optimize forecasts for OA and its impacts

#### Recent updates:

- GOA-ON recognized by the UN General Assembly
- "Distributed secretariat" being stood up

#### Membership



#### **GOA-ON** data portal



### U.S. IOOS®: Program Overview

#### **Coastal Component**

- 17 Federal agencies
- 13 regional partners
- Academia & Industry

#### **Global Component**

- US contribution to GOOS
- 63% of the Global Climate Ocean Observing System completed

#### **Mission Areas**

Grow our Blue Economy by

- Predicting Weather & Climate variability
- Supporting Safe & Efficient Transportation and Commerce
- Preparing Risk Reduction for Coastal Communities

Integrated Coastal Ocean Observing System (ICOOS) Act (P.L. No 111-11, March 2009)

Partnership effort that leverages dispersed national investments to deliver ocean, coastal and Great Lakes data relevant to decision-makers





### Atmospheric Radiation Measurement (ARM) Research Facility

Jim Mather

Pacific Northwest National Laboratory (PNNL)

## The DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility

#### **ARM Vision Statement**

To provide a detailed & accurate description of the earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and earth system models toward the development of sustainable solutions for the Nation's energy & environmental challenges.











#### **Interagency Engagement**

#### **Mechanisms for Engagement**

- Participation in international conferences
- Participation multi-agency field campaigns
- Open data access attracts broad array of science users
- Open access to ARM facility resources (field observatories, computing facilities, and staff)
- Outreach to entrain specific domain expertise

Distribution of ARM science users by primary funding source





#### **Obstacles**

- Moving funds across agencies
- Tendency to focus on internal facilities
- Understanding of processes



## NOAA Atmospheric Baseline Observatories

Jim Butler

NOAA Earth System Research Laboratory, Global Monitoring Division



## Interagency Collaboration at NOAA's Atmospheric Baseline Observatories





Barrow, AK Mauna Loa, HI

Aerosols, Solar Radiation, Meteorology, Black Carbon, Ozone, and Water Vapor 60°N 60°N 30°N 30°N MAUNA LOA 30°S 30°S ▼ OZONESONDE 60°S ☐ AEROSOL LIDAR 60°S + AIRCRAFT 90°S 180° 140°W 100°W 60°W

Tula, American Samoa

South Pole, Antarctica



James H. Butler, Director Global Monitoring Division NOAA Earth System Research Laboratory Boulder, Colorado 80305 USA



#### Cooperative Research Projects





Ozone & Water Vapor balloon flight in Boulder



Aerosol stack upgrade at Bondville, IL



Barrow, AK Atmospheric Baseline Observatory

- Both scientific and operational collaboration.
- Currently supporting ~70 projects across the observatory network.
- NSF, DOE, NASA, DOI (USGS, BLM & USFWS), DHS (USCG & FEMA), Postal Service, GSA, & DOD (Air Force, Army & Navy) collaboration.
- We get a lot from our data...
  We get a lot more when we partner!



Sunrise balloon launch time-lapse at South Pole

## PANDORA trace gas measurements network

**Robert Swap** 

NASA Headquarters, Radiation Sciences Program



#### Pandora Spectrometer System

- Developed at NASA Goddard Space Flight Center with support from NASA HQ
- Ground-based direct sun/moon & sky scanning remote sensing for air quality and atmospheric composition (1S - ~270 – 530 nm, 0.6 nm; 2S – 400 – 900 nm, 1 nm)
- NRT Standard Operational Products at high frequency (~ 2 mins)
  - Total Column Ozone (+/-15 DU, ~5%); Total Column NO2 (+/-0.05 DU, ~10%)
- Additional non-validated products
  - HCHO Total column, trop. & near sfc; NO2, O3 trop. & near sfc
- Successfully deployed for multiple field campaigns (e.g. DISCOVER-AQ, KORUS-AQ, LMOS and OWLETS) as well as long-term monitoring.











#### **NASA Pandora Project**

- Project engaged agencies (e.g. EPA, NOAA, various state agencies) while participating in field campaigns (e.g. DISCOVER-AQ, KORUS-AQ, LMOS & OWLETS)
- Interagency interest related to modest instrument cost and future atmospheric satellite missions (TROPOMI & TEMPO) highly relevant to agency missions re. observing and complying with air quality standards (e.g. O3, NO2, SO2, PM2.5 and HCHO).
- Pandora Project strategy informed by those campaigns is to tie measurements to US AQ network and leverage existing logistical and observational infrastructure
- Currently 30 in US (20 NASA, 4 EPA, 5 SciGlob, 1 NOAA instruments). Pandora Project on track to complete an additional 25 1S instruments by July 2018
- NASA Pandora Project in collaboration with ESA through Luftblick currently developing the Pandonia Global Network (PGN) along lines of AERONET to provide global community with standardized and validated long-term AQ and AC observations to support ground-based, in-situ and satellite missions







# DYNAMO (Dynamics of the Madden Julian Oscillation) field campaign

**Chidong Zhang** 

NOAA Pacific Marine Environmental Laboratory

### DYNAMO (Dynamics of the Madden-Julian Oscillation) Field Campaign October 2011 – March 2012



## THE STATE OF THE S



#### Importance of the MJO:

- Bridge weather and climate
- Influence global high-impact events
- Provide a major source of predictability on seasonal-tosubseasonal (S2S) timescales

**DYNAMO Goal**: To expedite our understanding of MJO initiation processes and efforts to improve simulation and prediction of the MJO

#### **DYNAMO Hypotheses:** Three essential factors for MJO initiation are:

- Interaction between convection and its environmental moisture
- Distinct roles of different types of convective clouds at each MJO initiation stage
- Upper ocean processes and air-sea interaction



#### **Participants:**

16 countries

37 universities/80 students

32 national centers and laboratories

#### Data:

http://dynamo.fl-ext.ucar.edu/rsmas/dynamo\_legacy/

Publications: ~200

#### What way does your activity currently have interagency coordination or participation?

– NSF and NOAA continue their support of data analysis and modeling.

#### How was that interagency coordination or participation developed?

- US Clivar (led by David Legler) played the key role in the interagency coordination and communication with the DYNAMO science team through interagency group meetings and Clivar Summits.
- Program managers from DOE ARM and ONR led the way of funding decisions and coordination.
- NOAA and NSF followed by providing aircraft, more ship time, and ground facilities. NASA donated a radar.
- The DYNAMO Project Office (led by Jim Moore of NCAR, supported by NSF) took care of most logistic tasks.
- All agencies worked closely to beat the short lead time for preparation.

#### What are ways that other agencies/investigators could be involved or contribute?

- More NASA involvement would have made the observations more useful to satellite retrievals.
- Post-field modeling coordination didn't happen.

#### What are obstacles to interagency coordination that you have experienced? How have you overcome them?

- Different proposal deadlines and review procedures
- Willingness of taking risks

# ABOVE (Arctic Boreal Vulnerability Experiment) field campaign

Hank Margolis

NASA Headquarters, Terrestrial Ecology Program





#### Hank Margolis

## ABoVE is a large-scale NASA-led study of environmental change in arctic & boreal regions and the implications for ecological systems and society







#### **Our overarching Science Question is**

How vulnerable or resilient are ecosystems and society to environmental change in the arctic and boreal region of western North America?

Field and Modeling Projects: Carbon Cycling, Wildlife, Hydrology, Vegetation Dynamics, Wildfire

ABoVE Airborne Campaign 2017 (nine aircraft)







#### US Partners are Essential to ABoVE's Success

















Federal Agencies

BI M

NOAA





Native/ Aboriginal Organization

56 US Universities/Institutes

379 US Science Team Members

64 NASA Funded Projects

## LTER(Long-Term Ecological Research) network

Michelle Mack

Northern Arizona University





- 28 sites
- 37 years
- 2300 investigators
- >5911 public datasets
- >16,000 journal articles

#### Agency partnerships and collaborations:

- US Forest Service
- US Geological Survey
- National Park Service
- USDA Agricultural Research Service and And Natural Resource Conservation Service
- NOAA
- Army Corps of Engineers and Department of Defense
- BLM
- EPA
- NEON

#### New sites in 2017:

- Northeastern U.S. Shelf (NES)
- Northern Gulf of Alaska (NGA)
- Beaufort Lagoon Ecosystem (BLE)

#### LTER CORE RESEARCH AREAS















PRIMARY PRODUCTION

**POPULATIONS** 

DISTURBANCE

ORGANIC MATTER

INORGANIC MATTER

LAND USE/LAND COVER CHANGE

HUMAN-ENVIRONMENT INTERACTIONS

Five core themes have guided the designation of core datasets and formed the backbone for cross-site collaboration

- Primary Production
- Population Studies
- Movement of Organic Matter
- Movement of Inorganic Matter
- Disturbance Patterns

In addition, urban LTERs, and increasingly other LTER are particularly suited to tackle two additional themes:

- Land Use and Land Cover Change:
- Human-Environment Interactions